Abstract

Simple SummaryTissue biopsy is the gold standard for molecular genotyping in lung cancer. However, obtaining tumor tissue is challenging due to its invasiveness, inadequate amount of tissue, or complications. To overcome the limitations of tissue biopsy, plasma liquid biopsy using cfDNA has been investigated extensively; however, its low sensitivity limits the clinical application. Therefore, we used the tumor-specific DNA of extracellular vesicles (EVs) in bronchoalveolar lavage fluid (BALF) as DNA source for EGFR genotyping. As a result, we demonstrated that EV-based BALF EGFR testing in advanced lung NSCLC is a highly accurate rapid method overcoming low sensitivity of plasma cfDNA-based EGFR genotyping. It can be used as an adjuvant or alternative method for lung biopsy in cases where obtaining an adequate amount of tissue is difficult.To overcome the limitations of the tissue biopsy and plasma cfDNA liquid biopsy, we performed the EV-based BALF liquid biopsy of 224 newly diagnosed stage III-IV NSCLC patients and compared it with tissue genotyping and 110 plasma liquid biopsies. Isolation of EVs from BALF was performed by ultracentrifugation. EGFR genotyping was performed through peptide nucleic acid clamping-assisted fluorescence melting curve analysis. Compared with tissue-based genotyping, BALF liquid biopsy demonstrated a sensitivity, specificity, and concordance rates of 97.8%, 96.9%, and 97.7%, respectively. The performance of BALF liquid biopsy was almost identical to that of standard tissue-based genotyping. In contrast, plasma cfDNA-based liquid biopsy (n = 110) demonstrated sensitivity, specificity, and concordance rates of 48.5%, 86.3%, and 63.6%, respectively. The mean turn-around time of BALF liquid biopsy was significantly shorter (2.6 days) than that of tissue-based genotyping (13.9 days; p < 0.001). Therefore, the use of EV-based BALF shortens the time for confirmation of EGFR mutation status for starting EGFR-TKI treatment and can hence potentially improve clinical outcomes. As a result, we suggest that EV-based BALF EGFR testing in advanced lung NSCLC is a highly accurate rapid method and can be used as an alternative method for lung tissue biopsy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call