Abstract

Multiple myeloma (MM) patients have increased risk of developing venous thromboembolism, but the underlying mechanisms and the effect on the coagulation system of the disease and the current cancer therapies are not known. It is possible that cancer-associated extracellular vesicles (EV), carrying tissue factor (TF) and procoagulant phospholipids (PPL) may play a role in thrombogenesis. The aim of this study was to perform an in-depth analysis of procoagulant activity of small and large EVs isolated from 20 MM patients at diagnosis and after receiving first-line treatment compared with 20 healthy control subjects. Differential ultracentrifugation at 20,000 × g and 100,000 × g were used to isolate EVs for quantitative and phenotypical analysis through nanoparticle tracking analysis, Western blotting and transmission electron microscopy. The isolated EVs were analyzed for procoagulant activity using the calibrated automated thrombogram technique, a factor Xa-based activity assay, and the STA Procoag-PPL assay. In general, MM patients contained more EVs, and immunoelectron microscopy confirmed the presence of CD9- and CD38-positive EVs. EVs in the 20,000 × g pellets from MM patients exerted procoagulant activity visualized by increased thrombin generation and both TF and PPL activity. This effect diminished during treatment, with the most prominent effect observed in the high-dose chemotherapy eligible patients after induction therapy with bortezomib, cyclophosphamide, and dexamethasone. In conclusion, the EVs in patients with MM carrying TF and PPL are thus capable of exerting procoagulant activity.

Highlights

  • Cancer patients have a 4–7-fold higher risk of venous thromboembolism (VTE) than does the general population, but the risk in different cancer types varies, and the frequency of VTE in cancer patients is between 1–8% [1,2,3]

  • This setup to investigate procoagulant activity demonstrated a substantially higher thrombin generation and both tissue factor (TF) and PPL activity in extracellular vesicles (EV) in patients with MM than in healthy control subjects. This increase in procoagulant activity, diminished markedly in the patients receiving VCD induction therapy and to a lesser extent in those that received the conventional treatment. These results indicate that the procoagulant activity in MM can be ascribed to the larger EVs, which likely exert their procoagulant activity through PPL and TF

  • We demonstrated that some of the EVs possibly originate from the cancerous B cells

Read more

Summary

Introduction

Cancer patients have a 4–7-fold higher risk of venous thromboembolism (VTE) than does the general population, but the risk in different cancer types varies, and the frequency of VTE in cancer patients is between 1–8% [1,2,3]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call