Abstract

Accumulating evidence suggests that changes in both 5-hydroxytryptamine (5-HT) receptor activity and in the levels of reactive oxygen species (ROS) play an important role in regulating pulmonary artery (PA) vascular responsiveness, particularly in the setting of pulmonary hypertension. Therefore, we hypothesized that increased levels of superoxide enhance 5-HT-induced PA constriction. With the use of a small-vessel bioassay, 5-HT (0.01-10 microM) induced a concentration-dependent vasoconstriction in isolated wild-type murine intrapulmonary arteries (100-150 microm diameter) that was enhanced by both removal of the endothelium and by treatment with either N(G)-nitro-L-arginine methyl ester (30 microM) or xanthine (10 microM) + xanthine oxidase (0.005 U/ml). PA isolated from extracellular superoxide dismutase (EC-SOD) knockout mice also showed enhanced constriction. On the other hand, PA constriction to 5-HT was attenuated by either the addition of GR-127935 (0.1 microM, a selective inhibitor of 5-HT(1B/1D) receptor) or copper/zinc-containing superoxide dismutase (Cu/Zn SOD, 150 U/ml) and in PA isolated from transgenic mice overexpressing human EC-SOD. With the use of both oxidative fluorescent confocal microscopy and lucigenin-enhanced chemiluminescence, superoxide levels were increased significantly after 5-HT-induced PA vasoconstriction. This increase in superoxide levels could be blocked by the exogenous addition of Cu/Zn SOD (150 U/ml) or by apocynin (30 microM, an inhibitor of NADPH oxidase) but was not affected by gp91(phox) knockout mice. Overall, our results are consistent with 5-HT increasing vascular smooth muscle superoxide production via an NADPH oxidase pathway that is independent of gp91(phox), which leads to increases in extracellular superoxide levels, which in turn enhances 5-HT-induced murine pulmonary vasoconstriction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.