Abstract

Galectins, a family of soluble β-galactoside-binding proteins, are involved in the regulation of various cellular functions, which are essential for adaptive cellular stress responses (CSRs). Although expression patterns of galectins and galectin-binding glycans change during tissue development and cancer, the requirement and role of galectin networks in the CSRs are not completely understood. In this study, we report that the treatment of human promyelocytic HL-60 cells with stimuli mimicking hypoxia (CoCl2), inducing the endoplasmic reticulum stress (tunicamycin), and stimulating cell differentiation, result in stress-specific differential expression of galectin transcripts. In addition, we show that CoCl2 increases the expression of cell surface glycans recognized by both β-galactoside- and GlcNAc-binding lectins. Thus, microenvironmental stress changes the glycobiological status of cells representing expression profiles of endogenous lectins and corresponding glycans. These findings introduce a novel classification of galectins in HL-60 cells, which suggests diverse functions of galectin members in CSRs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call