Abstract

In epilepsy research, there is a growing interest in the role of the piriform cortex (PC) in the development and maintenance of limbic kindling and other types of limbic epileptogenesis leading to complex partial seizures. Neurophysiological studies on PC or amygdala-PC slice preparations from kindled rats showed that kindling of the amygdala induces long-lasting changes in synaptic efficacy in the ipsilateral PC, including spontaneous discharges and enhanced susceptibility of PC neurons to evoked burst responses. These long-lasting electrophysiological changes in the PC during kindling appear to be due, at least in part, to impaired function of gamma-aminobutyric acid (GABA)ergic interneurons. The aim of the present study was to develop an anesthetic protocol allowing electrophysiological single-unit recordings from inhibitory, presumably GABAergic PC interneurons in vivo. In addition to recording of spontaneously active PC neurons, microiontophoretic application of glutamate was used to activate silent neurons. Anesthesia of rats with ketamine/xylazine was not suited for single-unit recordings in the PC because of marked cardiovascular depression. Anesthesia with chloral hydrate allowed recording of spontaneous or glutamate-driven single-unit activity in approximately 40% of all animals. A similar percentage was obtained when recordings were done with the narcotic opioid fentanyl (plus gallamine), after all surgical preparations were performed under anesthesia with repeated administration of the barbiturate methohexital. To avoid brain accumulation of methohexital by repeated applications, we modified the anesthetic protocol in that methohexital was only injected once for initiation of surgical anesthesia, followed by the short-acting anesthetic propofol which does not accumulate upon repeated application. Again, after surgical preparation, electrophysiological recordings were done under fentanyl (plus gallamine). By this procedure, spontaneous or glutamate-driven single-unit activity could be measured in all rats in either layer II or III of the PC. Based on shape and frequency of action potentials, two types of neurons were recorded. The predominant type was similar in its firing characteristics to GABAergic neurons in other brain regions, was mainly located in layer III, and could be suppressed by the serotonin2A receptor antagonist MDL 100,907, suggesting that this type of PC neuron represents inhibitory, putative GABAergic interneurons. This new in vivo preparation may be useful for evaluation of PC neurons in kindled rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call