Abstract

We previously developed an animal model to examine mechanisms that underlie the emergence of visceral hypersensitivity modeling pain characteristics of temporomandibular disorder (TMD) patients with comorbid irritable bowel syndrome (IBS). In ovariectomized (OVx) rats with estradiol (E2) replacement, visceral hypersensitivity developed subsequent to masseter muscle inflammation followed by repeated forced swim (FS) stress. The purpose of this study was to investigate whether activation of extracellular signal-regulated kinase (ERK) in the spinal cord contributes to visceral hypersensitivity in this overlapping pain model. In OVx with E2 replacement rats masseter muscle inflammation was followed by 3day FS (comorbid condition). Depression-like behaviors were assessed by sucrose preference and in the elevated plus maze, and visceral sensitivity was measured by the visceromotor response (VMR) to colorectal distention. The protein level of ERK1/2 and phosphorylated ERK1/2 (p-ERK1/2) in the L6-S2 dorsal spinal cord was analyzed by western blot. FS stress decreased sucrose consumption in E2 replaced rats in sucrose preference test. The expression of p-ERK1/2 in the L6-S2 dorsal spinal cord increased significantly in E2 with comorbid rats. Intrathecal injection of mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor PD98059 blocked the visceral hypersensitivity induced by masseter muscle inflammation combined with FS stress. These data indicate that ERK1/2 activation contributes to the visceral hypersensitivity evoked by craniofacial inflammation pain combined with stress. The results may provide a new therapeutic avenue for alleviating overlapping pain conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.