Abstract

The cerebrospinal fluid-contacting nucleus (CSF-CN) may influence actual composition of the CSF for non-synaptic signal transmission via releasing or absorbing bioactive substances, which distributes and localizes in the ventral periaqueductal central gray of the brainstem. Previous studies demonstrated that CSF-CN was involved in neuropathic pain and morphine dependence. Thus, to identify whether extracellular signal-regulated kinase 5 (ERK5) distributed in the CSF-CN and its function on the formation and development of morphine physical dependence, morphine withdrawal-like behavioral test and immunofluorescent technique were used in this research. Morphine was subcutaneously injected by an intermittent and escalating procedure to induce physical dependence, which was measured by withdrawal symptoms. In this study, we found that horseradish peroxidase-conjugated toxin subunit B/p-ERK5 double-labeled neurons expressed in the CSF-CN of normal rats. ERK5 signaling pathway was remarkably activated by naloxone-precipitated withdrawal in the CSF-CN. Moreover, selective attenuation of p-ERK5 expression in the CSF-CN by lateral ventricle injection of BIX02188 could significantly relieve morphine withdrawal symptom. These findings confirmed that the activation of p-ERK5 in the CSF-CN might contribute to morphine physical dependence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.