Abstract

This study addresses the hypothesis that NO- and pressure-induced natriuresis are inhibited when guanosine cyclic 3',5'-monophosphate (cGMP) is prevented from being transported outside its renal synthesizing cells in vivo. Rats received a renal interstitial (RI) infusion of NO donor S-nitroso-N-acetylpenicillamine (SNAP) or SNAP+organic anion transporter inhibitor probenecid (PB) or SNAP+PB+cGMP. SNAP alone increased U(Na)V (P<0.05 at 1 hour and P<0.005 at 2 hours). In contrast, SNAP failed to increase U(Na)V when coinfused with PB, but cGMP coinfused with SNAP+probenecid restored the natriuretic response. SNAP alone increased RI cGMP (P<0.05) during the second experimental period. PB abolished the increase in RI cGMP in response to SNAP (P<0.01), but cGMP levels were restored by coinfusion with cGMP. PB also abolished SNAP-induced increases in fractional excretion of Na(+) (FE(Na)) and lithium (FE(Li)) (both P<0.01). PB also abolished the rise in RI cGMP and natriuresis induced by raising renal perfusion pressure (RPP) from 100 to 160 mm Hg in rats subjected to a standard pressure-natriuresis protocol and the natriuretic response was rescued by coinfusion with cGMP. RI administration of phosphodiesterase type V (PDE V) reduced both RIcGMP and U(Na)V in parallel (both P<0.01) without altering RIcAMP. The data demonstrate that export of cGMP from its renal synthesizing cells into the extracellular RI compartment is critical for the natriuretic action of NO donor SNAP or increased RPP and that RI cGMP controls basal Na(+) excretion. Extracellular cGMP modulates NO- and pressure-induced natriuresis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.