Abstract

To investigate the mechanisms that mediate the release of ATP induced by cyclic mechanical stress (CMS) and the role of extracellular ATP in the mobilization of arachidonic acid (AA) and prostaglandin secretion. Porcine trabecular meshwork (pTM) cells were subjected to CMS. Extracellular ATP was detected with a luciferin-luciferase assay in the presence or absence of transport inhibitors and a lipid raft disrupter. ATP vesicles were visualized with quinacrine. The release of AA (AA 1-14C) was measured with and without ATP, ATP inhibitors, and phospholipase-A and -C inhibitors. Prostaglandin E2 (PGE2) and viability were measured with ELISA and a lactate dehydrogenase assay, respectively. CMS induced ATP release that was inhibited by the vesicle inhibitors N-ethylmaleimide (NEM) and monensin. Lipid raft disruption significantly increased the extracellular ATP induced by CMS. CMS induced AA release (1-4-fold increase) and its metabolic product PGE2 (3.9-fold increase). The AA mobilization induced by CMS could be mimicked by the addition of extracellular ATP and was partially inhibited by a P2 antagonist, by an ATP inhibitor, and by inhibitors of phospholipase-A2 and -C. Addition of PGE2 (10 microM) to the media exerted cytoprotective effects against long-term CMS. Extracellular release of ATP induced by CMS in TM cells is mediated by exocytosis of ATP-enriched vesicles into lipid rafts. The resulting activation of purinergic receptors leads to mobilization of AA from the plasma membrane. The subsequent release of PGE could exert protective effects by preventing TM cell loss that may result from chronic exposure to CMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.