Abstract

Sodium influx is tightly regulated in the cells of blood origin. Amiloride-insensitive sodium channels were identified as one of the main sodium-transporting pathways in leukemia cells. To date, all known regulatory pathways of these channels are coupled with intracellular actin cytoskeleton dynamics. Here, to search for physiological mechanisms controlling epithelial Na+ channel (ENaC)-like channels, we utilized leukemia K562 cells as a unique model to examine single channel behavior in a whole-cell patch-clamp experiments. We have shown for the first time that extracellular serine protease trypsin directly activates sodium channels in plasma membrane of K562 cells. The whole-cell single current recordings clearly demonstrate no inhibition of trypsin-activated channels by amiloride or benzamil. Involvement of proteolytic cleavage in channel opening was confirmed in experiments with soybean trypsin inhibitor. More importantly, stabilization of F-actin with intracellular phalloidin did not prevent trypsin-induced channel activation indicating no implication of cytoskeleton rearrangements in stimulatory effect of extracellular protease. Our data reveals a novel mechanism modulating amiloride-insensitive ENaC-like channel activity and integral sodium permeability in leukemia cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call