Abstract

The immigration of microbial communities in a synergistic partial denitrification/anammox (SPDA) system was investigated in a moving bed biofilm reactor (MBBR) inoculated with partial denitrification (PD) and anaerobic ammonium oxidation (anammox) biofilms. The SPDA system was operated at 25 ± 1 °C over 260 days. The total nitrogen (TN) of the effluent was only 3.71 ± 0.92 mg·L−1 in the stable phase with a TN removal efficiency of 95.23%. The anammox process was the dominant nitrogen removal pathway with an average contribution of 74.31% to TN removal. The results of the in situ activity and key enzymatic activity revealed that the nitrate-reducing bacteria tended to immigrate to anammox biofilms. Correspondingly, the abundance of the genus Thauera, the second most dominant bacteria in anammox biofilms, quickly increased from 0.78 to 10.69% on day 50 and eventually to 16.45% on day 221 according to the Illumina MiSeq sequencing data. The microbial immigration might be caused by different extracellular polymeric substance (EPS)-mediated mechanisms in PD and anammox biofilms. For fast-growing denitrifiers, PD biofilms tend to increase the ability of mass transfer by excreting more polysaccharides to form loosely-bound EPS at the expense of the ability to harbor the nitrate-reducing bacteria. However, for the slow-growing anaerobic ammonium oxidizing bacteria (AnAOB), the anammox biofilms tend to increase the retention of AnAOB by excreting more proteins to form enhanced tightly-bound EPS at the expense of the mass transfer ability, thereby causing the detached nitrate-reducing bacteria to immigrate into anammox biofilms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call