Abstract

Ribonucleic acid (RNA) was previously thought to remain inside cells as an intermediate between genes and proteins during translation. However, it is now estimated that 98% of the mammalian genomic output is transcribed as noncoding RNAs, which are involved in diverse gene expression regulatory mechanisms and can be transferred from one cell to another through extracellular communication. For instance, microRNAs are 22-nucleotide-long noncoding RNAs that are generated by endonuclease cleavage of precursors inside the cells and are secreted as extracellular microRNAs to regulate target cell posttranscriptional gene expression via RNA interference. We and others have shown that different populations of microRNAs are expressed in distinct regions of the human epididymis and regulate the expression of target genes that are involved in the control of male fertility as indicated by knock-out mouse models. Importantly, some microRNAs, including the microRNA-888 (miR-888) cluster that is exclusively expressed in the reproductive system of human and nonhuman primates, are released in the sperm-surrounding fluid in the epididymis via extracellular vesicles, the so-called epididymosomes. In addition to interacting with the membrane of maturing spermatozoa, these extracellular vesicles containing microRNAs communicate with epithelial cells located downstream from their release site, suggesting a role in the luminal exocrine control of epididymal functions. Apart from their potential roles as mediators of intercellular communication within the epididymis, these extracellular microRNAs are potent molecular targets for the noninvasive diagnosis of male infertility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.