Abstract
An efficient bacterial synthesis method to harvest cadmium telluride (CdTe) quantum dots (QDs) with tunable fluorescence emission using Escherichia coli is demonstrated. Ultraviolet-visible, photoluminescence, X-ray diffraction and transmission electron microscopy analysis confirmed the superior size-tunable optical properties, with fluorescence emission from 488 to 551 nm, and the good crystallinity of the as synthesized QDs. A surface protein capping layer was confirmed by hydrodynamic size, zeta potential and Fourier transform infrared spectroscopy measurements, which could maintain the viability (92.9%) of cells in an environment with a QD concentration as high as 2 microM. After functionalization with folic acid the QDs were used to image cultured cervical cancer cells in vitro. Investigations of bacterial growth and morphology and the biosynthesis of CdTe QDs in Luria-Bertani medium containing E. coli-secreted proteins showed that extracellular synthesis directly relied on the E. coli-secreted proteins, and a mechanism for protein-assisted biosynthesis of QDs is proposed. This work provides an economical approach to fabricate highly fluorescent biocompatible CdTe QDs via an environmentally friendly production process. The biosynthesized QDs may have great potential in broad bio-imaging and bio-labeling applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.