Abstract

We have studied the extracellular matrix composition of cultured glial cells by immunocytochemistry with different monoclonal and polyclonal antibodies. Double immunofluorescence experiments and metabolic labeling with [ 3H ]glucosamine performed in different types of cerebellar and cortical cultures showed that bipotential progenitors for type-2 astrocytes and for oligodendrocytes (recognized by the monoclonal antibody LB1 at early stages of their development) synthesize chondroitin sulfate (CS) and deposit this proteoglycan in their extracellular matrix. The distribution of the various [ 3H ]glucosamine-labeled glycosaminoglycans between the intracellular and the extracellular space was different. CS was present both within the cells and in the culture medium, although in different amounts. Bipotential progenitors became also O4-positive during their development in vitro. At the stage of O4-positivity they were still stained with antibodies against CS. However, when the progenitor cells were maintained in serum-free medium and differentiated into Gal-C-positive oligodendrocytes, they became CS-negative. In the presence of fetal calf serum in the culture medium, the bipotential progenitors differentiated into GFAP-positive type-2 astrocytes. These cells still expressed CS: their Golgi area and their surface were stained with anti-CS antibodies. Staining with monoclonal antibodies specific for different types of CS (4-sulfate, 6-sulfate, and unsulfated) revealed that both bipotential progenitors and type-2 astrocytes synthesized only chondroitin 4-sulfate. Type-1 astrocytes were negative for both the polyclonal and the monoclonal anti-CS antibodies. Finally, type-2 astrocytes and their progenitors were weakly stained with anti-laminin antibodies and unstained with anti-fibronectin. Type-1 astrocytes were positive for both anti-laminin and anti-fibronectin antibodies and appeared to secrete fibronectin in the extracellular space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.