Abstract

We utilized fluorescence microscopy and affinity-purified antibodies to probe the form and function of cytoplasmic actin in endothelial cells (EC) recovering from injury and grown on extracellular matrices in vitro. Bovine aortic EC were seeded onto glass microscope coverslips that had been coated with either BSA, fibronectin, type I and III (interstitial) collagens, type IV (basement membrane) collagen or gelatin. After EC that had been grown on glass, glass-BSA or extracellular matrix-coated coverslips reached confluence, a 300-400 micron zone of cells was mechanically removed to stimulate EC migration and proliferation. Post-injury EC movements were monitored with time-lapse, phase-contrast videomicrography before fixation for actin localization with fluorescence microscopy using affinity-purified antibodies. We found that the number of stress fibres within EC was inversely proportional to the rate of movement; and, the rates of movement for EC grown on glass or glass-BSA were approximately eight times faster than EC grown on gelatin or type IV collagen (X velocity = 0.5 micron/min versus 0.06 micron/min). EC movements on fibronectin and interstitial collagens were similar (X velocity = 0.2 micron/min). These results suggest that extracellular matrix molecules modulate EC stress fibre expression, thereby producing alterations in the cytoskeleton and the resultant EC movements that follow injury in vitro. Moreover, the induction of stress fibres in the presence of basement membrane (type IV) collagen may explain the failure of aortic EC to migrate and repopulate wounded regions of intima during atherogenesis in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.