Abstract

Organoids hold inestimable therapeutic potential in regenerative medicine and are increasingly serving as an in vitro research platform. Still, their expanding applications are critically restricted by the canonical culture matrix and system. Synthesis of a suitable bioink of bioactivity, biosecurity, tunable stiffness, and printability to replace conventional matrices and fabricate customized culture systems remains challenging. Here, we envisaged a novel bioink formulation based on decellularized extracellular matrix (dECM) from porcine small intestinal submucosa for organoids bioprinting, which provides intestinal stem cells (ISCs) with niche-specific ECM content and biomimetic microstructure. Intestinal organoids cultured in the fabricated bioink exhibited robust generation as well as a distinct differentiation pattern and transcriptomic signature. This bioink established a new co-culture system able to study interaction between epithelial homeostasis and submucosal cells and promote organoids maturation after transplantation into the mesentery of immune-deficient NODSCID-gamma (NSG) mice. In summary, the development of such photo-responsive bioink has the potential to replace tumor-derived Matrigel and facilitate the application of organoids in translational medicine and disease modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.