Abstract
Immunohistochemical methods were employed to examine alterations in the cartilage extracellular matrix constituents associated with endochondral ossification in humans. The distributions of chondroitin 4- and 6-sulfate and keratan sulfate proteoglycan (PG) determinants, cartilage PG link protein, collagen types I and II, and fibronectin were determined in iliac crest growth-plate specimens using the avidin-biotin-horseradish peroxidase system. Collagen type II was distributed throughout the growth plate, providing a framework within which chondrocytes divided and formed clusters of differentiating (hypertrophic) cells. The septa between these clusters and their subchondral extensions into underlying bone trabeculae were rich in PG, PG link protein, and collagen type II and resembled the extracellular matrix of reserve cartilage. The territorial matrix associated with the differentiating cells within the clusters contained reduced amounts of collagen type II, PG link protein, and possibly cartilage PG. Collagen type I and fibronectin were detected within the cytoplasm of the maturing and degenerating cells, and fibronectin localized intensely to the pericellular matrix envelopes of these cells. These alterations presumably facilitate the degradation of the matrix associated with the cell clusters by invading vascular tissue, while the septa, which retain the characteristics of more typical cartilage matrix, are not degraded and firmly anchor the cartilage to the subchondral bone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.