Abstract
Extracellular HIV-1 Tat protein (0.1-100 ng/ml) induced a rapid (peak at 30 min) increase in the Ser133 phosphorylation levels of the transcription factor CREB in serum-starved Jurkat cells, as revealed by Western blot and indirect immunofluorescence analyses. Nuclear cAMP-responsive element (CRE) binding activity in electrophoretic mobility shift assays was constitutive in unstimulated Jurkat cells, showing only a small increase upon Tat treatment. However, transient transfection experiments performed with various chloramphenicol acetyl-transferase (CAT) constructs showed that Tat produced a fourfold induction of CAT activity only in the presence of a CRE-dependent CAT construct. Moreover, the use of plasmids encoding for GAL4-CREB fusion proteins demonstrated that Tat induction of pG4-CAT reporter gene required the CREB moiety of the GAL4-CREB fusion protein and that Ser133 CREB was essential for Tat activity. Extracellular Tat also stimulated Ser133 CREB phosphorylation in freshly isolated PBMC; this effect was completely blocked by either staurosporin, a broad-spectrum inhibitor of various protein kinases, or PD 98059, a specific inhibitor of mitogen-activated protein kinases (MAPK). Furthermore, extracellular Tat induced a rapid (peak at 5-15 min) stimulation of the MAPK catalytic activity in primary PBMC. Altogether, these findings suggest that HIV-1 Tat protein activates CREB in lymphoid cells through a signal cascade involving the MAPK pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.