Abstract

The prevention and treatment of acute chest syndrome (ACS) is a major clinical concern in sickle cell disease (SCD). However, the mechanism underlying the pathogenesis of ACS remains elusive. We tested the hypothesis that the hemolysis byproduct hemin elicits events that induce ACS. Infusion of a low dose of hemin caused acute intravascular hemolysis and autoamplification of extracellular hemin in transgenic sickle mice, but not in sickle-trait littermates. The sickle mice developed multiple symptoms typical of ACS and succumbed rapidly. Pharmacologic inhibition of TLR4 and hemopexin replacement therapy prior to hemin infusion protected sickle mice from developing ACS. Replication of the ACS-like phenotype in nonsickle mice revealed that the mechanism of lung injury due to extracellular hemin is independent of SCD. Using genetic and bone marrow chimeric tools, we confirmed that TLR4 expressed in nonhematopoietic vascular tissues mediated this lethal type of acute lung injury. Respiratory failure was averted after the onset of ACS-like symptoms in sickle mice by treating them with recombinant hemopexin. Our results reveal a mechanism that helps to explain the pathogenesis of ACS, and we provide proof of principle for therapeutic strategies to prevent and treat this condition in mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.