Abstract

Although postsynaptic and transmembrane currents over local neuronal populations are considered the main factors for shaping local field potential (LFP) and current source density (CSD) fluctuations [1], high-frequency oscillatory LFPs can also be shaped by extracellular action potentials of pyramidal cell populations [2]. Sharp wave-ripple complexes (SWRs) are typical examples of such high-frequency oscillatory events, observed in hippocampal LFPs during deep sleep and awake immobility. They consist of an extensive depolarization in the CA1 dendritic layer (sharp wave) arising from population bursts in CA3, accompanied by a ~150-200 Hz LFP oscillation in the CA1 pyramidal layer (ripple). During SWRs, temporal firing patterns of correlated place cells, acquired during wakeful exploration, are replayed in fast-scale, providing a strong indication for the participation of SWRs in memory consolidation. Yet the particular effects of these pattern replays on the hippocampal extracellular field are largely unknown. How are the different ensembles of spiking cells encoded in the emerging ripple-LFPs? Here, we study this association through both a modeling and an experimental approach.

Highlights

  • Postsynaptic and transmembrane currents over local neuronal populations are considered the main factors for shaping local field potential (LFP) and current source density (CSD) fluctuations [1], high-frequency oscillatory LFPs can be shaped by extracellular action potentials of pyramidal cell populations [2]

  • * Correspondence: jtaxidis@caltech.edu 1Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA Full list of author information is available at the end of the article explore in a systematic fashion the influence of spiking cell assemblies on the spatiotemporal characteristics of emerging extracellular fields during Sharp wave-ripple complexes (SWRs)

  • We apply our analysis to a set of LFPs and unit activity, recorded in vivo, from multiple locations in areas CA3 and CA1 of the rat hippocampus while animals run on a linear track with resting areas at both ends

Read more

Summary

Introduction

Postsynaptic and transmembrane currents over local neuronal populations are considered the main factors for shaping local field potential (LFP) and current source density (CSD) fluctuations [1], high-frequency oscillatory LFPs can be shaped by extracellular action potentials of pyramidal cell populations [2]. We employ a spiking network model of the CA3 and CA1 hippocampal areas that reproduces key features of SWRs based on synchronous CA3 population bursts and strong, fast-decaying CA1 recurrent inhibition [3].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.