Abstract

Extracellular enzyme production by the actinomycete,Thermomonospora curvata, was characterized during growth at 55°C on bagasse as sole carbon source. Mycelia adhered to the bagasse fibers during early growth and were released in mature cultures. Extracellular protein reached a maximum on 4% (w/v) bagasse and yielded an electrophoretic profile similar to those produced on purified cellulose. Cellulase production on bagasse exceeded that observed forT. curvata on any previously employed substrate. Amylase and pectinase, which were diminished by their instability in culture fluid at growth temperature and by the lack of inducing substrate, were readily inducible by addition of starch or pectin, respectively. Extracellular activities of β-glucosidase and β-xylosidase remained insignificant throughout growth. Xylanase production equaled or exceeded that observed on a variety of other substrates. The combined activity of extracellular enzymes from bagasse-grownT. curvata caused a 27% solubilization of the fiber, yielding a mixture of cellooligosaccharides, cellobiose, xylobiose, glucose, xylose, fructose, arabinose and mannitol. Fractionation of concentrated extracellular proteins by size exclusion chromatography yielded single peaks for amylase and pectinase (estimated molecular weights of 58 K and 34 K respectively), while cellulase and xylanase activities were distributed throughout a series of multiple unresolved peaks spanning a molecular weight range of 26–180 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.