Abstract

Microbial biofilm has been found to impact the mobility of nanoparticles in saturated porous media by altering physicochemical properties of collector surface. However, little is known about the influence of biofilm’s biological activity on nanoparticle transport and retention. Here, the transport of ferrihydrite nanoparticles (FhNPs) was studied in quartz sands coated with biofilm of Shewanella oneidensis MR-1 that is capable of reducing Fe(III) through extracellular electron transfer (EET). It was found that MR-1 biofilm coating enhanced FhNPs’ deposition under different pH/ionic strength conditions and humic acid concentrations. More importantly, when the influent electron donor (glucose) concentration was increased to promote biofilm’s EET activity, the breakthrough of FhNPs in biofilm-coated sands was inhibited. A lack of continuous and stable supply of electron donor, on the contrary, led to remobilization and release of the originally retained FhNPs. Column experiments with biofilm of EET-deficient MR-1 mutants (ΔomcA/ΔmtrC and ΔcymA) further indicated that the impairment of EET activity decreased the retention of FhNPs. It is proposed that the effective surface binding and adhesion of FhNPs that is required by direct EET cannot be neglected when evaluating the transport of FhNPs in sands coated with electroactive biofilm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.