Abstract

4-Aminopyridine is widely used as a Kv channel blocker. However, its mechanism of action is still a matter of debate. Extracellular calcium as well as 4-aminopyridine have been reported to interact with the activation kinetics of particular Kv channels. The objective of the present study was to investigate whether extracellular calcium could modulate the inhibition of Kv current by 4-aminopyridine in vascular myocytes. Kv current was recorded by using whole-cell patch-clamp in freshly isolated smooth muscle cells from rat mesenteric artery. Macroscopic properties of Kv current were not affected by change in extracellular calcium from 0 to 2mM. During a 10s depolarizing pulse, 4-aminopyridine inhibited the peak current without affecting the end-pulse current. The concentration–effect curve of 4-aminopyridine was shifted to the left in the presence of 2mM calcium compared to 0 calcium. After 4-aminopyridine washout, current recovery from block was slower in the presence than in the absence of calcium. Inhibition of Kv current by 4-aminopyridine (0.5mM) and the Kv2 blocker stromatoxin (50nM) was additive and stromatoxin did not alter the potentiation of 4-aminopyridine effect by extracellular calcium. These results showed that extracellular calcium modulated the inhibitory potency of 4-aminopyridine on Kv current in vascular myocytes. The component of Kv current that was inhibited by 4-aminopyridine in a calcium-sensitive manner was distinct from Kv2 current.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.