Abstract

In this study, zinc oxide (ZnO) nanoparticles (NPs) were rapidly synthesized from zinc sulfate solution at room temperature using a metabolically versatile actinobacteria Rhodococcus pyridinivorans NT2. The morphology, structure and stability of the synthesized ZnO NPs were studied using UV–visible absorption spectroscopy, X-ray Diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) with energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), Zeta potential, and thermogravimetry. The data indicated that the synthesized nanoparticles were moderately stable, hexagonal phase, roughly spherical with average particle diameter in the range of 100–120nm. Results obtained on examination of protein expression revealed that cell enzymes and extracellular protein systems of Rhodococcus sp. may take part in synthesis process. Furthermore, the ZnO NPs were coated onto textile fabrics to enhance UV-blocking, self-cleaning and antibacterial properties. Ultraviolet protecting factor (UPF) indicating UV-blocking properties of ZnO NPs coated textile fabrics were determined as 65, 88, 121, 172 and 241 for 1, 2, 3, 4 and 5gm−2 of ZnO NPs, respectively. Besides, self-cleaning activity was assessed by investigating photocatalytic activity on malachite green as well as antibacterial activity against aerobic Gram-positive Staphylococcus epidermidis NCIM 2493 (ATCC 12228). The antibacterial effects of these textiles were evaluated using ISO 20743 standard. In addition, ZnO NPs exhibited a preferential ability to kill HT-29 cancerous cells as compared with normal peripheral blood mononuclear cells (PBMCs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.