Abstract

The roles of the extracellular biophysical environment in cancer are barely studied. This study considers the possibility that cell-like topography of a cancer cell environment may influence chemo-responses. Here, a novel bioimprinting technique was employed to produce cell-like topography on the polystyrene substrates used for cell culture. In this work, we have shown that extracellular biophysical cues generated from the topography alter the chemosensitivity of ovarian cancer cells. The three-dimensionality of the bioimprinted surface altered the cell-surface interaction, which consequently modulated intracellular signalling and chemoresponses. Sensitivity to platinum was altered more than that to paclitaxel. The effect was largely mediated through the integrin/focal adhesion system and the Rho/ROCK pathway. Moreover, the results provided evidence that biophysical cues also modulate MAPK signalling associated with chemo-resistance in ovarian cancer. Therefore, the novel findings from of this study revealed for the first time that the effects of the biophysical environment, such as substrate topography, influences ovarian cancer cell responses to clinical drugs. These observations suggest that a full clinical understanding of ovarian cancer will include biophysical aspects of tumour microenvironment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call