Abstract
1. The presence and profile of purinoceptors in neurons of the hamster submandibular ganglion (SMG) have been studied using the whole-cell configuration of the patch-clamp technique. 2. Extracellular application of adenosine 5'-triphosphate (ATP) reversibly inhibited voltage-dependent Ca(2+) channel (VDCC) currents (I(Ca)) via G(i/o)-protein in a voltage-dependent manner. 3. Extracellular application of uridine 5'-triphosphate (UTP), 2-methylthioATP (2-MeSATP), alpha,beta-methylene ATP (alpha,beta-MeATP) and adenosine 5'-diphosphate (ADP) also inhibited I(Ca). The rank order of potency was ATP=UTP>ADP>2-MeSATP=alpha,beta-MeATP. 4. The P2 purinoceptor antagonists, suramin and pyridoxal-5-phosphate-6-azophenyl-2', 4'-disulfonic acid (PPADS), partially antagonized the ATP-induced inhibition of I(Ca), while coapplication of suramin and the P1 purinoceptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), virtually abolished I(Ca) inhibition. DPCPX alone partially antagonized I(Ca) inhibition. 5. Suramin antagonized the UTP-induced inhibition of I(Ca), while DPCPX had no effect. 6. Extracellular application of adenosine (ADO) also inhibited I(Ca) in a voltage-dependent manner via G(i/o)-protein activation. 7. Mainly N- and P/Q-type VDCCs were inhibited by both ATP and ADO via G(i/o)-protein betagamma subunits in seemingly convergence pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.