Abstract

Previous studies have shown that exogenous ATP (>1µM) prevents bone formation in vitro by blocking mineralisation of the collagenous matrix. This effect is thought to be mediated via both P2 receptor-dependent pathways and a receptor-independent mechanism (hydrolysis of ATP to produce the mineralisation inhibitor pyrophosphate, PPi). Osteoblasts are also known to release ATP constitutively. To determine whether this endogenous ATP might exert significant biological effects, bone-forming primary rat osteoblasts were cultured with 0.5-2.5U/ml apyrase (which sequentially hydrolyses ATP to ADP to AMP + 2Pi). Addition of 0.5U/ml apyrase to osteoblast culture medium degraded extracellular ATP to <1% of control levels within 2 minutes; continuous exposure to apyrase maintained this inhibition for up to 14 days. Apyrase treatment for the first 72 hours of culture caused small decreases (≤25%) in osteoblast number, suggesting a role for endogenous ATP in stimulating cell proliferation. Continuous apyrase treatment for 14 days (≥0.5U/ml) increased mineralisation of bone nodules by up to 3-fold. Increases in bone mineralisation were also seen when osteoblasts were cultured with the ATP release inhibitors, NEM and brefeldin A, as well as with P2X1 and P2X7 receptor antagonists. Apyrase decreased alkaline phosphatase (TNAP) activity by up to 60%, whilst increasing the activity of the PPi-generating ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs) up to 2.7-fold. Both collagen production and adipocyte formation were unaffected. These data suggest that nucleotides released by osteoblasts in bone could act locally, via multiple mechanisms, to limit mineralisation.

Highlights

  • Adenosine triphosphate (ATP) has long been recognized for its role in intracellular energy metabolism; it is an important extracellular signalling molecule

  • The P2 receptors respond to nucleotides including ATP, adenosine diphosphate (ADP), uridine triphosphate (UTP) and uridine diphosphate (UDP) and are further subdivided into the P2X ligand-gated ion channels and the P2Y G-protein-coupled receptors [2,3]

  • We have demonstrated that ATP and UTP, signalling via the P2Y2 receptor, strongly inhibit bone mineralisation and osteoblast alkaline phosphatase (TNAP) activity [19,20]

Read more

Summary

Introduction

Adenosine triphosphate (ATP) has long been recognized for its role in intracellular energy metabolism; it is an important extracellular signalling molecule. Extracellular nucleotides, signalling via purinergic receptors, are known to participate in a wide number of biological processes. The receptors for purines and pyrimidines are classified into two groups; P1 receptors and P2 receptors. There are four P1 receptor subtypes (A1, A2a, A2b, A3); these receptors are G-protein coupled and activated by adenosine. The P2 receptors respond to nucleotides including ATP, adenosine diphosphate (ADP), uridine triphosphate (UTP) and uridine diphosphate (UDP) and are further subdivided into the P2X ligand-gated ion channels and the P2Y G-protein-coupled receptors [2,3]. Seven P2X receptors (P2X1-7) and eight P2Y receptors (P2Y1,2,4,6,11-14) have been identified; each receptor has been cloned, characterised and displays distinct pharmacology and tissue expression [4,5]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call