Abstract
Absorption of NaCl by the thick ascending limb (TAL) involves active transport and therefore depends on oxidative phosphorylation. Extracellular ATP has pleiotropic effects, including both stimulation and inhibition of transport and inhibition of oxidative phosphorylation. However, it is unclear whether ATP alters TAL transport and how this occurs. We hypothesized that ATP inhibits TAL Na absorption by reducing Na entry. We measured oxygen consumption in TAL suspensions. ATP reduced oxygen consumption in a concentration-dependent manner. The purinergic (P2) receptor antagonist suramin (300 microM) blocked the effect of ATP on TAL oxygen consumption (147 +/- 15 vs. 146 +/- 16 nmol O2 x min(-1) x mg protein(-1)). In contrast, the adenosine receptor antagonist theophylline did not block the effect of ATP on oxygen consumption. When Na-K-2Cl cotransport and Na/H exchange were blocked with furosemide (100 microM) plus dimethyl amiloride (100 microM), ATP did not inhibit TAL oxygen consumption (from 78 +/- 13 to 98 +/- 5 nmol O2 x min(-1) x mg protein(-1)). The Na ionophore nystatin (200 U/ml) increased TAL oxygen consumption to a similar extent in both ATP- and vehicle-treated samples (368 +/- 41 vs. 397 +/- 47 nmol O2 x min(-1) x mg protein(-1)). The nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (3 mM) blocked the ATP effects on TAL oxygen consumption (157 +/- 10 vs. 165 +/- 15 nmol O2 x min(-1) x mg protein(-1)). The P2X-selective receptor antagonist NF023 blocked the effect of ATP on oxygen consumption, whereas the P2X-selective agonist beta-gamma-Me-ATP reduced oxygen consumption in a concentration-dependent manner. We conclude that ATP inhibits Na transport-related oxygen consumption in TALs by reducing Na entry and P2X receptors and nitric oxide mediate this effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.