Abstract

Shigella species cause bacillary dysentery in humans by invading colonic epithelial cells. IpaB and IpaC, two major invasins of these pathogens, are secreted into the extracellular milieu. We show here that IpaB and IpaC form a complex in the extracellular medium and that each binds independently to a 17 kDa polypeptide, IpgC, in the bacterial cytoplasm. The IpgC polypeptide was found to be necessary for bacterial entry into epithelial cells, to stabilize the otherwise unstable IpaB protein, and to prevent the proteolytic degradation of IpaC that occurs through its association with unprotected IpaB. We propose that IpgC, which is not secreted and thus acts as a molecular chaperone, serves as a receptor that prevents premature oligomerization of IpaB and IpaC within the cytoplasm of Shigella cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.