Abstract
Brain ischemia is accompanied by lowering of pHo and pHi. We investigated an influence of of acidosis on free radical formation in synaptosomes. Three models were used. 1) Strong extracellular acidification down to pHo 6.0. 2) Moderate extracellular acidification down to pHo 7.0 3) Intracellular acidification induced by addition of 1 mM amiloride corresponding to pHi decrease down to 6.65. We have shown that both types of extracellular acidification, but not intracellular acidification, increase DCFDA fluorescence by calcium-independent way that reflects free radical formation. These three treatments induce the rise of the dihydroethidium fluorescence that reports synthesis of superoxide anion. However, the impact of low pHi on superoxide anion synthesis was less than induced by moderate extracellular acidification. Mitochondrial uncoupler CCCP did not inhibit an increase of fluorescence of both dyes at pHo 6.0. In contrast, superoxide anion synthesis at pHo 7.0 was almost completely eliminated by CCCP. Furthermore, using fluorescent dyes JC-1 and rhodamine-123, we confirmed that decrease of pHo leads to mitochondria depolarization. Low pHi was not effective. Iron chelator deferoxamine and antioxidant ionol are inhibits pH-induced increase of DCFDA fluorescence, but does not influenced mitochondria depolarization. We are failed to found sodium influx monitored by fluorescent dye Sodium Green in case of low pHo. Involving of plasma membrane receptor which is distinct from acid-sensitive ion channels (ASIC) and electron transport chain of mitochondria for moderate acidification can be suggested. Action of strong acidification seems to be mediated by release of iron from proteins. We have shown that low pHo led to oxidative stress in neuronal presynaptic endings that might underlie the long term irreversible changing in synaptic transmission.
Highlights
Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by progressive dementia
The results of the present study indicate that development of the neuronal hypoxic tolerance induced by the three-trial, in contrast to one-trial, mild hypoxic preconditioning is apparently largely associated with the activation of CREB, as well as brain-derived neurotrophic factor (BDNF) and Bcl-2 overexpression
No significant differences in serum level of Solubile form of RAGE (sRAGE) where found between rapidly progressing and slow progressing subgroup of multiple sclerosis (MS) patients.Our results suggest for the role of sRAGE in MS ethiopathogenesis, but we did not find any association of sRAGE in serum with the rate of MS disability progression
Summary
Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by progressive dementia. The aim of the study was to characterize the effects of streptozocin (STZ)-indced diabetes on learning and memory of 5XFAD and wild-type (WT) mice in Morris water maze (MWM) at ages 2 and 6 months and on brain amyloid load. Existing evidence suggests GABAergic system is involved in pathophysiology of Alzheimer’s disease (AD) via inhibitory interneuron deficits (Verret et al, 2012) and decrease in functional GABAA receptors (Limon et al, 2012). Our concept: low doses of muscimol may prevent learning/memory deficits in intracerebroventricular (icv) streptozocin (STZ)-induced AD nontransgenic rat model. The Sigma-1 receptor is a chaperone protein that modulates intracellular calcium signalling of the endoplasmatic reticulum and is involved in learning and memory processes.The aim of the present study was to compare in vitro Ca2+ concentration modulating activity and in vivo behavioural effects of enantiomers of methylphenylpiracetam, a novel positive allosteric modulator of Sigma-1 receptors
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.