Abstract

Proton-exchange membranes (PEMs), characterized by selectively permitting the transfer of protons and acting as a separator in electrochemical devices, have attracted immense attention. The composite membrane, fabricated from organic polymer matrix and high proton-conducting metal-organic framework (MOF), integrates the excellent physical and chemical performances of the polymer and MOF, achieving collective properties for good-performance PEMs. In this study, we demonstrate that MOF-801 shows remarkable proton conductance with σ = 1.88 × 10-3 S cm-1 at 298 K and 98% relative humidity (RH), specifically, together with extra stability to hydrochloric acid or diluting sodium hydroxide aqueous solutions and boiling water. Furthermore, the composite membranes (denoted MOF-801@PP- X, where X represents the mass percentage of MOF-801 in the membrane) have been fabricated using the sub-micrometer-scale crystalline particles of MOF-801 and blending the poly(vinylidene fluoride)-poly(vinylpyrrolidone) matrix, and these PEMs display high proton conductivity, with σ = 1.84 × 10-3 S cm-1 at 325 K 98% RH. A composite membrane as PEM was assembled into H2/O2 fuel cell for tests, indicating that these membrane materials have vast potential for PEM application on electrochemical devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.