Abstract
A TQFT is a functor from a cobordism category to the category of vector spaces satisfying certain properties. An important property is that the vector spaces should be finite dimensional. For the WRT TQFT, the relevant 2 + 1 2+1 -cobordism category is built from manifolds which are equipped with an extra structure such as a p 1 p_1 -structure or an extended manifold structure. We perform the universal construction of Blanchet, Habegger, Masbaum, and Vogel (1992) on a cobordism category without this extra structure and show that the resulting quantization functor assigns an infinite dimensional vector space to the torus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.