Abstract
Narrowband and high-transmission optical filters are extensively used in color display technology, optical information processing, and high-sensitive sensing. Because of large ohmic losses in metallic nanostructures, metallic filters usually exhibit low transmittances and broad bandwidths. By employing both strong field enhancements in metallic nano-slits and the Wood’s anomaly in a periodic metallic grating, an extra-narrowband and high-transmission metallic filter is numerically predicted in an ultrathin single-layer metallic grating. Simulation results show that the Wood’s anomaly in the ultrathin (thickness H = 60 nm) single-layer metallic grating results in large field enhancements in the substrate and low losses in the metallic grating. As a result, the transmission bandwidth (transmittance T > 60%) at λ = 1200 nm is as small as ΔλFWHM = 1.6 nm, which is smaller than 4% of that in the previous thin dielectric and metallic filters. The corresponding quality factor is as high as Q = λ/ΔλFWHM = 750, which is 40 times greater than that in the previous reports. Moreover, the thickness of our metallic filter (H = 60 nm) is smaller than 40% of that in the previous reports, and its maximum transmittance can reach up to 80%. In experiments, a narrowband metallic filter with a bandwidth of about ΔλFWHM = 10 nm, which is smaller than 25% of that in the previous metallic filters, is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.