Abstract
Upon uptake of toxins, insects launch a detoxification program. This program is deployed in multiple organs and cells to raise their tolerance against the toxin. The molecular mechanisms of this program inside the insect body have been studied and understood in detail. Here, we report on a yet unexplored extra-corporeal detoxification of insecticides in Drosophila melanogaster. Wild-type D. melanogaster incubated with DDT, a contact insecticide, in a closed environment died as expected. However, incubation of a second cohort in the same environment after removal of the dead flies was not lethal. The effect was significantly lower if the flies of the two cohorts were unrelated. Incubation assays with Chlorpyrifos, another contact insecticide, yielded identical results, while incubation assays with Chlorantraniliprole, again a contact insecticide, was toxic for the second cohort of flies. A cohort of flies incubated in a DDT environment after an initial incubation of a honeybee survived treatment. Together, our data suggest that insects including Apis mellifera and D. melanogaster have the capacity to modify their proximate environment. Consequently, in their ecological niche, following individuals might be saved from intoxication thereby facilitating colonisation of an attractive site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.