Abstract

To present a new concept for the extinguishment of wildfires by saturation water bombing. Following an exhaustive literature search, a published mathematical model and a published empirical rainfall model were used to estimate the rate at which water would have to be applied to extinguish intense wildfires. Applying the estimated amount by quasi-continuous saturation water bombing was then evaluated. The mathematical model yielded a regression equation that estimates the amount of water to extinguish wildfires of varying sizes as y = 0.1041 x - 5.0096 where y is the quantity of water and x is the size of the fire. The predicted quantities of 1000 metric tonnes ha for intense wildfires vastly exceed the minimum of 50 metric tonnes ha of the empirical rain model, likely due to the limited data available. They nevertheless serve to define the likely range of water application rates that must be applied for wildfire extinguishment. These application rates are shown to be feasible by deploying a team of large, amphibious water scooping aircraft operating in relay continuously day and night. The operating cost of such a team (±$10 million annually) is trivial compared to the potential for reducing the current economic burden of US wildfire of $71.1-347.8 billion annually. The saturation water bombing concept seems promising enough to warrant the commitment of funds to implement field trials on the ground that it could, potentially, result in savings of billions of dollars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.