Abstract

Several studies strongly support the role of the dopamine D2-like and glutamate mGlu5 receptors in psychostimulant reward and relapse. The present study employed cocaine or MDMA self-administration with yoked-triad procedure in rats to explore whether extinction training affects the drug-seeking behavior and the D2-like and mGlu5 receptor Bmax and Kd values in several regions of the animal brain. Both cocaine and MDMA rats developed maintenance of self-administration, but MDMA evoked lower response rates and speed of self-administration acquisition. During reinstatement tests, cocaine or MDMA seeking behavior was produced by either exposure to the drug-associated cues or drug-priming injections. The extinction training after cocaine self-administration did not alter significantly D2-like receptor expression the in the limbic and subcortical brain areas, while MDMA yoked rats showed a decrease of the D2-like binding density in the nucleus accumbens and increase in the hippocampus and a rise of affinity in the striatum and hippocampus. Interestingly, in the prefrontal cortex a reduction in the mGlu5 receptor density in cocaine- or MDMA-abstinent rats was demonstrated, with significant effects being observed after previous MDMA exposure. Moreover, rats self-administered cocaine showed a rise in the density of mGlu5 receptor for the nucleus accumbens. This study first time shows that abstinence followed extinction training after cocaine or MDMA self- or passive-injections changes the D2-like and mGlu5 density and affinity. The observed changes in the expression of both receptors are brain-region specific and related to either pharmacological and/or motivational features of cocaine or MDMA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call