Abstract

The analysis of interacting population models is the subject of much interest in mathematical ecology. Moreover, the persistence and extinction of these models is one of the most interesting and important topics, because it provides insight into their behavior. The mean extinction-time for stochastic population models considered in this paper depends on the initial population size and satisfies a stationary partial differential equation, related to the backward Kolmogorov differential equation, a linear second-order partial differential equation with variable coefficients. In this communication we review several papers where we have proposed some numerical techniques in order to estimate the mean extinction-time for stochastic population models. Besides, we will compare the theoretical predictions and numerical simulations for stochastic differential equations (SDEs). This work can be viewed as a unified review of the contributions de la Hoz and Vadillo (2012), de la Hoz et al. (2014) and Doubova and Vadillo (2014).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call