Abstract
We use the discrete dipole approximation method to investigate the length-dependent optical extinction spectra and the E-field enhancement of Ag nanorods with different topologic shapes, such as cylindrical, needlelike, periodic, L, and Y shapes. Comparing to nanorods with a simple shape (cylinder and needle), irregular nanorods show many distinct plasmon resonances over a large spectral range. The main plasmon peaks are redshifted with the increase of the lengths and enhanced E-field distribution at those wavelengths depends strongly on the shapes of the nanorods. More hot spots are observed for the nanorods with more defects (i.e., periodic, L, and Y shapes) and the maximum E fields are in the same order of magnitude for cylindrical nanorods and depends on the polarization and propagation directions of the excitation light. The polarization dependent extinction spectra of nanorods with different shapes have also been calculated and are shown to be dependent on the symmetry of the nanorod structure. With specific incident direction, by changing the incident polarization angle, the maximum E field of L- and Y-shaped nanorods can vary in location and magnitude. These results show that defects or imperfections in Ag nanorod structures could drastically change the optical properties, generate extra hot spots for surface enhanced spectroscopy, and have different enhanced field distribution for future plasmonic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.