Abstract

'Universal fuser' clones of a human papillomavirus type 16 positive cervical carcinoma cell line (SiHa) were established to study the effect of a non-tumorigenic fusion partner on the regulation of a stably integrated chloramphenicol acetyltransferase (CAT) gene controlled by the HPV18 upstream regulatory region under non-selective conditions. The CAT expressing cells were fused with both non-tumorigenic, spontaneously immortalized human keratinocytes (HaCaT) and non-modified SiHa cells. The resulting hybrids were characterized by restriction enzyme fragment length polymorphism analysis and flow cytometry. While the non-selectable, HPV18-driven indicator gene is constitutively expressed in SiHa cells, the CAT activity is extinguished in SiHa x HaCaT cells, but still present in SiHa x SiHa hybrids. Examination of the cytokeratin expression pattern reveals that the keratinocyte phenotype seems not only to be dominant in terms of the extinction of the HPV18 regulatory region but also by the conservation of most of the differentiation markers of the non-tumorigenic fusion partner. Cycloheximide treatment and intracellular competition experiments using the transient COS7 fusion-amplification technique are accompanied by the reactivation of the marker gene in previously CAT- SiHa x HaCaT hybrids. These data strongly suggest that trans-acting negative regulatory factors derived from the non-malignant human keratinocytes are responsible for the extinction phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.