Abstract

Although the importance of cAMP-response element binding protein (CREB) phosphorylation in long-term memory formation is well documented for hippocampus-dependent tasks, little is known about the changes in phosphorylated CREB (pCREB) that occur during the process of extinction. The purpose of this study was to characterize the temporal patterns of pCREB in the CA1 and the amygdala after the extinction of previously acquired spatial information in the water maze. Mice were trained to find a hidden platform located at a fixed position and then were given extinction sessions in which the platform was either absent (NoPF) or relocated every day (RandomPF). We show that water maze spatial training evoked a biphasic response of pCREB in the CA1, with two different peaks occurring 15 min and 8 h postacquisition. The extinction of the original spatial preference significantly reduced the two peaks of CA1 pCREB in both RandomPF and NoPF groups whereas CA1 pCREB at 60 min post-training remained unaffected. Moreover, the early and late phases of extinction training produced regionally dissociable effects on pCREB in the CA1 and the lateral nucleus of the amygdala. These findings provide new insights on the molecular dynamics and anatomical dissociations underlying spatial memory and extinction learning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call