Abstract

Extinction in open space of flames from pool fires by downwardly directed water sprays has been investigated on two linear scales, one three times larger than the other. Circular pool fires were employed as fire sources, mostly in the form of gas discharge (methane) from a horizontal sand surface but also, to a limited extent, in the form of heptane pools. The results are presented in normalized plots based on scaling theory verified in a previous study. Extinction data from the methane fires are insensitive to the initial spray angle of the nozzle discharge. The data are consistent with an engineering relation showing extinction water flow rate approximately proportional to an effective nozzle diameter, and to the 0.4-power of both nozzle height and freeburn heat release rate. This result has been interpreted to indicate that spray-induced dilution of the flammable gas is a major factor in extinguishing fires from gaseous discharge. Extinction data of liquid pool fires from this study ( n-heptane) and previous investigations (gasoline, JP-5) are consistent with the methane data, except for somewhat higher water rates at extinction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.