Abstract

Extinction measurements with a laser diode (0.685 µm) and a Fourier transform infrared spectrometer (2-18 µm) were performed on laboratory ice clouds (5 µm ≤ D ≤ 70 µm) grown at a variety of temperatures, and thus at a variety of crystal habits and average projected crystal area. Ice clouds were grown by nucleation of a supercooled water droplet cloud with a rod cooled with liquid nitrogen. The ice crystals observed were mainly plates and dendrites at the coldest temperatures (≈-15 °C) and were mainly columns and needles at warmer temperatures (≈-5 °C). The crystals were imaged with both a novel microscope equipped with a video camera and a heated glass slide and a continuously running Formvar replicator. The IR spectral optical-depth measurements reveal a narrow (0.5-µm-width) extinction minimum at 2.84 µm and a wider (3-µm-width) minimum at 10.5 µm. These partial windows are associated with wavelengths where the real part of the index of refraction for bulk ice has a relative minimum so that extinction is primarily due to absorption rather than scattering (i.e., the Christiansen effect). Bulk ice has absorption maxima near the window wavelengths. IR extinction efficiency has a noticeable wavelength dependence on the average projected crystal area and therefore on the temperaturedependent crystal properties. The average-size parameters in the visible for different temperatures ranged from 64 to 128, and in the IR they ranged from 2.5 to 44. The extinction efficiency and the single-scatter albedo for ice spheres as computed from Mie scattering also show evidence of the Christiansen effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.