Abstract

This study examined high-resolution online monitoring data from January to February 2020 to study the extinction characteristics and sources of heavy pollution episodes during winter in Tianjin. Heavy pollution episodes occurred during this period from January 16 to 18 (episode Ⅰ), from January 24 to 26 (episode Ⅱ), and from February 9 to 10 (episode Ⅲ). The results showed that the concentrations of PM2.5 during the three heavy pollution episodes were (229±52), (219±48), and (161±25) μg·m-3, respectively, with NO3-, SO42-, NH4+, OC, EC, Cl-, and K+ comprising the main species. The values of the scattering coefficient(Bsp550) during the three heavy pollution episodes were (1055.65±250.17), (1054.26±263.22), and (704.44±109.89) Mm-1, respectively, while the absorption coefficient(Bap550) showed much lower values of (52.96±13.15), (39.72±8.21), and (34.50±8.53) Mm-1, respectively. PM2.5 played a major role in atmospheric extinction during heavy pollution episodes. Specifically, nitrate (38.9%-48.8%), sulfate (31.1%-40.7%), and OM (9.9%-21.8%) were the most important extinction components. The contribution of PM2.5 chemical components to the extinction coefficient varied significantly between the three episodes; the percentage of nitrate was higher in episode Ⅰ than in the other two episodes; in episode Ⅱ, the percentage of OM was highest, significantly affected by the discharge of fireworks; in episode Ⅲ, as traffic decreased but coal combustion emissions remained constant, the contribution of nitrate to the extinction coefficient decreased, while that of sulfate increased. Source apportionment of extinction coefficients was performed using PMF model combined with IMPROVE. Various pollution sources contributed to the extinction coefficient, namely: secondary sources (37.1%-42.0%), industrial and coal combustion (22.9%-24.2%), vehicle exhaust (23.9%-27.2%), crustal dust (5.0%-6.4%), and fireworks and biomass burning (3.9%-6.2%). Compared with episode Ⅰ, the contribution of fireworks and biomass burning increased significantly during episode Ⅱ, while the contribution of vehicle exhaust decreased significantly during episode Ⅲ. The contribution of industrial and coal combustion was similar during all three heavy pollution episodes. According to backward analysis, the small-scale and short-distance transmissions from Hebei provinces, as well as the medium and short-distance transmissions from central Inner Mongolia, were the major sources during heavy pollution episodes in the winter in Tianjin City.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call