Abstract

Considering that many prey populations in nature have group defense behavior, and the relationship between predator and prey is usually affected by environmental noise, a stochastic predator-prey model with group defense behavior is established in this paper. Some dynamical properties of the model, including the existence and uniqueness of global positive solution, sufficient conditions for extinction and unique ergodic stationary distribution, are investigated by using qualitative theory of stochastic differential equations, Lyapunov function analysis method, Itô formula, etc. Furthermore, the effects of group defense behavior and environmental noise on population stability are also discussed. Finally, numerical simulations are carried out to illustrate that the effects of environmental noise on both populations are negative, the appropriate group defense level of prey can maintain the stability of the relationship between two populations, and the survival threshold is strongly influenced by the intrinsic growth rate of prey population and the intensity of environmental noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.