Abstract

We formulated a Coronavirus (COVID-19) delay epidemic model with random perturbations, consisting of three different classes, namely the susceptible population, the infectious population, and the quarantine population. We studied the proposed problem to derive at least one unique solution in the positive feasweible region of the non-local solution. Sufficient conditions for the extinction and persistence of the proposed model are established. Our results show that the influence of Brownian motion and noise on the transmission of the epidemic is very large. We use the first-order stochastic Milstein scheme, taking into account the required delay of infected individuals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.