Abstract

Green ammonia, produced using renewable energy, is a promising carbon-free energy vector and fuel. This work studies combustion of ammonia-hydrogen fuel mixtures with air in counterflow diffusion flame experiments and provides an improved kinetic mechanism for modeling ammonia combustion. The extinction strain rate is measured for a range of 0 to 15% hydrogen in the fuel blend. The flame structure is also investigated with quantitative laser-induced fluorescence (LIF) measurements of nitric oxide (NO) for the same hydrogen concentrations and strain rate range from 26 to 134 s−1. For these conditions, NO concentration increases with both strain rate and fuel hydrogen content. The previously published kinetic model developed by the authors is used to perform one-dimensional flame simulations of the experimental setup and conditions, and results are compared to three other recently published ammonia mechanisms. None of the selected models satisfactorily predict both the measured extinction strain rate and flame NO concentration. The models mainly fail to predict extinction strain rate at higher H2 fraction and NO formation at the highest experimental strain rates and H2 fraction. The reaction rate parameters for some of the key reactions in the published model developed by authors were updated to improve agreement with experimental results. The updated model results are closely aligned with extinction strain rate measurements, and have improved prediction of flame NO concentration. The model reveals that the reactions from the NH2 and NH sub-mechanism are sensitive in predicting the extinction strain rate as well as NO. In particular, the reaction NH+NO=N2O+H had significant impact on NO predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call