Abstract

Abstract No standardized treatment exists for patients with recurrent glioblastoma (GBM). Given the aggressive nature of the disease and difficulty in modeling tumor recurrence, minimal efforts have been made to design rational therapies against it. The roundabout guidance receptor 1 (ROBO1) protein is involved in axonal guidance during neurodevelopment and is aberrantly upregulated in glioma where it mediates glioma cell migration. Here, we present that ROBO1 is highly expressed on the surface of malignant and treatment-refractory brain tumor initiating cells (BTICs), prompting the development of an anti-ROBO1 CAR-T cell therapy. Using the binding region of a single-domain antibody targeting ROBO1, we developed second-generation anti-ROBO1 CAR-T cells specific and effective against ROBO1-expressing BTICs. Upon antigen exposure, anti-ROBO1 CAR-T cells upregulated markers of activation and degranulation. Additionally, treatment of orthotopic and patient-derived brain tumor xenograft models with anti-ROBO1 CAR-T cells resulted in reduced tumor burden and prolonged survival, demonstrating the therapy’s therapeutic potential for treating neoplastic brain malignancies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.