Abstract

Abstract Immune enhancement of virotherapy by reshaping the tumor immune landscape may improve its success rates. IDO, an IFNγ inducible tryptophan catabolizing enzyme, is upregulated in glioblastoma, correlating with poor prognoses. IDO-mediated tryptophan depletion in the tumor-microenvironment decreases proliferation and induces apoptosis of surrounding effector T-cells. Kynurenine, a metabolite of tryptophan, induces T-cell differentiation into immunosuppressive Tregs. Excess kynurenine elicits AhR-mediated lymphocyte dysfunction and immunosuppression. The immune stimulating effect of oncolytic-virus, Delta-24-RGDOX, triggers IFNγ production contributing to a positive IDO-Kynurenine-AhR feedback loop. We hypothesized that combining Delta-24-RGDOX with IDO inhibitors will synergize to effectively treat glioblastoma. We characterized IDO and AhR in Delta-24-RGDOX infected cancers using immunofluorescence, qRT-PCR, and flow cytometry and found increased expression of both proteins in vitro and in vivo. We also observed induction of AhR in CD4+ and CD8+ T-cells by Delta-24-RGDOX in vivo. Delta-24-RGDOX also increased activity of AhR in cancer cells as indicated by an AhR responsive elements transcription assay. We used a murine glioblastoma model to test the efficacy of combining Delta-24-RGDOX with IDO inhibitor, 1MT/indoximod; the combination produced 30% more long-term survivors compared Delta-24-RGDOX alone (P=0.03), which we showed, through lymphocytic depletion studies, was dependent on CD4+ T-cell activation. We observed 100% survival in the re-challenged long-term glioblastoma survivors, indicating the establishment of immune memory by the combination. Functional studies showed significant increases in anti-tumor activity of splenocytes from combination-treated mice compared to Delta-24-RGDOX-treated mice (P=0.009). Flow cytometry studies revealed that combination-treated mice yielded the highest levels of chronically activated T-cells and lowest levels of Tregs and myeloid derived suppressor cells compared to Delta-24-RGDOX single treatment (P≤0.05). This microenvironment remodeling correlated with complete tumor elimination. Altogether, Delta-24-RGDOX activates the IDO-Kyn-AhR cascade in gliomas, identifying new targets, which when inhibited have the potential to enhance the anti-glioma effect of oncolytic-viruses by reversing tumor immunosuppression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call