Abstract

Suboptimal treatment outcomes contribute to the high disease burden of mood, anxiety or psychotic disorders. Clinical prediction models could optimise treatment allocation, which may result in better outcomes. Whereas ample research on prediction models is performed, model performance in other clinical contexts (i.e. external validation) is rarely examined. This gap hampers generalisability and as such implementation in clinical practice. Systematically appraise studies on externally validated clinical prediction models for estimated treatment outcomes for mood, anxiety and psychotic disorders by (1) reviewing methodological quality and applicability of studies and (2) investigating how model properties relate to differences in model performance. The review and meta-analysis protocol was prospectively registered with PROSPERO (registration number CRD42022307987). A search was conducted on 8 November 2021 in the databases PubMED, PsycINFO and EMBASE. Random-effects meta-analysis and meta-regression were conducted to examine between-study heterogeneity in discriminative performance and its relevant influencing factors. Twenty-eight studies were included. The majority of studies (n = 16) validated models for mood disorders. Clinical predictors (e.g. symptom severity) were most frequently included (n = 25). Low methodological and applicability concerns were found for two studies. The overall discrimination performance of the meta-analysis was fair with wide prediction intervals (0.72 [0.46; 0.89]). The between-study heterogeneity was not explained by number or type of predictors but by disorder diagnosis. Few models seem ready for further implementation in clinical practice to aid treatment allocation. Besides the need for more external validation studies, we recommend close examination of the clinical setting before model implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.