Abstract

Neurosurgery is a demanding field with small margins of error within the operative field. Small errors can yield devastating consequences. Simulation has been proposed as a methodology for improving surgical skills within the neurosurgical realm. This study was conducted to investigate a novel realistic design for a clinical simulation based, low-cost alternative of external ventricular drain (EVD) placement, an essential basic neurosurgical procedure that is necessary for clinicians to master. A low-cost three-dimensional (3D) printed head using thermoplastic polylactic acid was designed with the tactile feedback of outer table, cancellous bone, and inner tables for drilling with replaceable frontal bones pieces for multi-use purposes. An agar gel filled with water was designed to simulate tactile passage through the cortex and into the ventricles. Neurosurgical and emergency resident physicians participated in a didactic session and then attempted placement of an EVD using the model to gauge the simulated model for accuracy and realism. Positioning, procedural time, and realism was evaluated. Improvements in procedural time and positioning were identified for both neurosurgical and emergency medicine (EM) residents. Catheter placement was within ideal position for all participants by the third attempt. All residents stated they felt more comfortable with placement with subsequent attempts. Neurosurgical residents subjectively noted similarities in tactile feedback during drilling compared to in-vivo. A low-cost realistic 3D printed model simulating basic neurosurgical procedures demonstrated improved procedural times and precision with neurosurgical and EM residents. Further, similarities between in-vivo tactile feedback and the low-cost simulation technology was noted. This low cost-model may be used as an adjunct for teaching to promote early procedural competency in neurosurgical techniques to promote learning without predisposition to patient morbidity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call